STEREOSELECTIVE SYNTHESIS OF 2-(2'-CYCLOALKENYL)GLYCINATES VIA ESTER-ENOLATE CLAISEN REARRANGEMENT

Paul A. Bartlett* and James F. Barstow

Department of Chemistry, University of California Berkeley, California 94720

Ester-enolate Claisen rearrangement of 2-cycloalkenyl $N-\underline{t}$ -Boc-glycinates leads to the biologically active RS,SR-diastereomers selectively.

 γ, δ -Unsaturated α -amino acids are of interest as atypical, naturallyoccurring amino acids,¹ as enzyme inhibitors,² and as synthetic precursors to other derivatives.³ The recent isolation of 2-(2'-cyclopentenyl)glycine <u>1</u> from a natural source^{1a} and the stereochemical elucidation of this material^{4a} and the 2-cyclohexenyl analog <u>2</u>^{4b} prompt us to report our work on the stereoselective synthesis of these compounds.

As indicated in the preceding communication,³ the ester-enolate Claisen rearrangement is useful for the diastereoselective construction of γ , δ -unsaturated isoleucine derivatives. To study its application to the synthesis of $\frac{1}{2}$ and $\frac{2}{2}$, we prepared the 2-cyclopentenyl and 2-cyclohexenyl esters 3a, b and 4a, b.^{5,6}

Rearrangement of the hippuryl esters $\underline{3a}$ and $\underline{4a}$ as described in the preceding report³ proceeds non-diastereoselectively and in poor to fair yields: the cyclo-pentenyl isomers $\underline{5a:6a}$ are formed in 1:1 ratio and 45% yield; the cyclohexenyl

analogs $\underline{7a}:\underline{8a}$ in 2:1 ratio and 22% yield. In view of the results obtained on ester-enolate Claisen rearrangement of other cyclic esters⁷ and with the analogous crotyl ester,³ the absence of stereoselectivity is somewhat surprising. Whether this is inherent in the rearrangement or the result of subsequent epimerization is not clear.⁸

On the other hand, the N- \underline{t} -Boc-protected ester $\underline{3b}$ and $\underline{4b}$ rearrange in significantly better yield and with higher stereoselectivity: in the cyclopentenyl case, the diastereomers $\underline{5b}:\underline{6b}$ are obtained in a ratio of 3:1 and a yield of 73%. Cleavage of the \underline{t} -Boc protecting group and acetylation enabled us to assign the stereochemistry by comparison with the reported 1 H-NMR properties for the two diastereomers $\underline{5c}$ and $\underline{6c}$.^{4a,9} It should be noted that the reported acetylation conditions (acetic anhydride in pyridine at 60°C for 2 hours)^{4a} lead to significant epimerization, presumably via the oxazolone. Acetylation without epimerization can be accomplished with acetic anhydride in aqueous NaHCO₃.

Although the yield on rearrangement of the cyclohexenyl ester $\underline{4b}$ is a modest 40%, the reaction proceeds almost stereospecifically to provide RS,SR diastereomer $\underline{7b}$ (ratio of $\underline{7b}:\underline{8b} = 25:1$ by ¹H-NMR of the N-acetyl methyl esters). We determined the structure of this material by conversion to the iodolactone $\underline{9}$,¹⁰ which was shown by ¹H-NMR to have the stereochemistry indicated, in analogy to the related methyl-⁷ and hydroxy-substituted¹¹ analogs. Subsequent to this work, the report by Trowitzsch and coworkers on the X-ray analysis of $\underline{8c}$ appeared,^{4b} and we were able to confirm our stereochemical assignment by NMR, as discussed above for the cyclopentenyl analog.¹²

The formation of the RS,SR-diastereomers $\underline{5b}$ and $\underline{7b}$ as the major Claisen rearrangement products is consistent with the predominant generation of the \underline{E} -enolate and subsequent rearrangement via the boat-like transition state $\underline{10b}$. The cis-selectivity for dianions such as $\underline{10a}$ appears to be a general phenomenon

<u>l0a</u>: R = Li<u>l0b</u>: $R = SiMe_3$

for a variety of amino acid derivatives, as revealed by their Claisen rearrangement selectivities.^{3,13} Moreover, the occurrence of the boat-like transition state in the Claisen rearrangement of <u>cyclic</u> allylic esters is well-established.^{7,14}

Although we performed these experiments using racemic material, the suprafacial nature of the Claisen rearrangement ensures that the 2-(2'-cycloalkenyl)glycines would be available in optically active form from optically active 2-cycloalkenols. It is of further interest to note that it is only the 2S,1'R diastereomers of $\underline{1}$ and $\underline{2}$ that show biological activity,⁴ and that this relative stereochemistry is the one produced selectively by the ester-enolate Claisen rearrangement process.

Acknowledgements. Support by the National Institutes of Health (grant no. CA-16616) is gratefully acknowledged. We also thank Dr. Spener and Dr. Trowitzsch for providing us with details of their ¹H-NMR assignments of $\underline{1}$.

REFERENCES AND NOTES

- (a) V. Cramer, A.G. Rehfeldt, and F. Spener, <u>Biochemistry</u>, <u>19</u>, 3074 (1980);
 (b) J.E. Semple, P.C. Wang, Z. Lysenko, and M.M. Jouillié, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 7505 (1980).
- 2. (a) J. Edelson, J.D. Fissekis, C.G. Skinner, and W. Shive, <u>J. Am. Chem. Soc</u>., <u>80</u>, 2698 (1958); R.L. Dennis, W.J. Plant, C.G. Skinner, G.L. Sutherland, and W. Shive, <u>ibid</u>., <u>77</u>, 2362 (1955); (b) P. Shannon, P. Marcotte, S. Coppersmith, and C. Walsh, Biochemistry, <u>18</u>, 3917 (1979).
- 3. P.A. Bartlett, D.J. Tanzella, and J.F. Barstow, <u>Tetrahedron Letters</u>, preceding paper.
- 4. (a) S. Santoso, T. Kemmer, and W. Trowitzsch, <u>Liebigs Ann. Chem.</u>, 658 (1981);
 (b) idem., ibid., 642 (1981).
- 5. A. Hassner and V. Alexanian, Tetrahedron Letters, 4475 (1978).
- All new compounds were characterized spectroscopically and by elemental analysis.
- 7. P.A. Bartlett and C.F. Pizzo, J. Org. Chem., 46, 3896 (1981).
- 8. In unpublished work, we have observed the intermediacy of oxazolones such as $\underline{\underline{i}}$ in the rearrangement of more highly substituted amino acid esters. Rapid epimerization of a glycine analog would be expected.

- 9. Recrystallization of the 3:1 mixture of <u>5c:6c</u> from methanol afforded material of mp 172-174°C (lit.^{4a} 156-158°C for a 1:1 mixture of <u>5c:6c</u> (racemic); 171-172°C for <u>5c</u> as a single enantiomer).
- 10. P.A. Bartlett and J. Myerson, J. Am. Chem. Soc., 100, 3950 (1978).
- 11. B.B. Snider and J.W. van Straten, <u>J. Org. Chem</u>., <u>44</u>, 3567 (1979).
- 12. Recrystallization of <u>7c</u> from methanol afforded material of mp 196-198°C (lit.^{4b} 184°C for a 1:1 mixture of <u>7c:8c</u> (racemic); 204-205°C for <u>7c</u> as a single enantiomer).
- 13. P.A. Bartlett and J.F. Barstow, J. Org. Chem., submitted for publication.
- 14. R.E. Ireland and J.P. Vevert, <u>J. Org. Chem.</u>, <u>45</u>, 4260 (1980); R.E. Ireland and J.P. Daub, <u>ibid.</u>, <u>46</u>, 479 (1981); R.J. Cave, B. Lythgoe, D.A. Metcalfe, and I. Waterhouse, J. Chem. Soc. Perkin I, 1218 (1977).

(Received in USA 5 October 1981)